Machine Learning in Elixir: Chapter 7 - Low accuracy and weight matrix full of NaNs in MLP example

I’m going through the MLP Livebook for identifying cats and dogs, and after training the MLP model and testing it, I get an accuracy of 4.8 (way lower than the example in the book) and the weights matrix int he trained model state is full of NaNs. The code is exactly the same as in the book. What am I doing wrong?

Here’s the output for the trained model state:

%{
  "dense_0" => %{
    "bias" => #Nx.Tensor<
      f32[256]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228705>
      [-0.006004911381751299, NaN, NaN, -0.006001265719532967, -0.006005018018186092, NaN, NaN, NaN, -0.006005273200571537, -0.005989077966660261, NaN, NaN, NaN, -0.006004870403558016, NaN, NaN, -0.006005257833749056, -0.006004877854138613, -0.006005317438393831, NaN, -0.005980218760669231, -0.005973377730697393, -0.00600520521402359, NaN, NaN, NaN, -0.006004676688462496, NaN, NaN, NaN, NaN, -0.006004626862704754, NaN, -0.006004307884722948, NaN, -0.006003706716001034, NaN, -0.006005176343023777, NaN, NaN, -0.00600530905649066, NaN, -0.006003919057548046, -0.005942464806139469, NaN, -0.006004999857395887, NaN, NaN, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[27648][256]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228706>
      [
        [-0.009822199121117592, NaN, NaN, -0.019302891567349434, 0.0013210634933784604, NaN, NaN, NaN, -0.0035181990824639797, -0.003965682815760374, NaN, NaN, NaN, -0.012110317125916481, NaN, NaN, -0.010716570541262627, 0.006445782259106636, -0.005844426807016134, NaN, -0.008739138022065163, -0.009861554950475693, -0.01141569297760725, NaN, NaN, NaN, -0.007794689387083054, NaN, NaN, NaN, NaN, 0.007325031328946352, NaN, -0.008747091516852379, NaN, -0.015862425789237022, NaN, -0.0023863192182034254, NaN, NaN, -0.008942843414843082, NaN, -0.01665472239255905, -0.01721101626753807, NaN, -0.005523331463336945, NaN, ...],
        ...
      ]
    >
  },
  "dense_1" => %{
    "bias" => #Nx.Tensor<
      f32[128]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228707>
      [-0.006005339790135622, -0.006005363073199987, NaN, 0.0, -0.006005348637700081, -0.006000204011797905, NaN, -0.0059988489374518394, -0.00600522430613637, NaN, 0.0, 0.006004837807267904, NaN, NaN, 0.0059986296109855175, -0.006005391012877226, -0.006004904862493277, NaN, 0.0060051423497498035, NaN, 0.006003301590681076, NaN, NaN, NaN, -0.0060053858906030655, -0.006005320698022842, 0.0, 0.00600471580401063, 0.0, NaN, NaN, -0.006005088798701763, -0.0060053677298128605, NaN, NaN, -0.006004550959914923, NaN, -0.006004488095641136, -0.006004879716783762, NaN, NaN, NaN, NaN, NaN, 0.0, NaN, 0.006000214722007513, ...]
    >,
    "kernel" => #Nx.Tensor<
      f32[256][128]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228708>
      [
        [0.1141437217593193, 0.02805522084236145, NaN, 0.09622809290885925, 0.05185674503445625, 0.017901137471199036, NaN, 0.046677932143211365, -0.12201476842164993, NaN, -0.09235477447509766, -0.006104507949203253, NaN, NaN, 0.08608447760343552, 0.012301136739552021, -0.05758747458457947, NaN, -0.08425487577915192, NaN, -0.07365603744983673, NaN, NaN, NaN, 0.07276518642902374, 0.00285704736597836, -0.12260323762893677, 0.11970219016075134, -0.08480334281921387, NaN, NaN, -0.039198994636535645, -0.03682233393192291, NaN, NaN, -0.08676794916391373, NaN, 0.03924785554409027, 0.07963936030864716, NaN, NaN, NaN, NaN, NaN, 0.027959883213043213, NaN, ...],
        ...
      ]
    >
  },
  "dense_2" => %{
    "bias" => #Nx.Tensor<
      f32[1]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228709>
      [NaN]
    >,
    "kernel" => #Nx.Tensor<
      f32[128][1]
      EXLA.Backend<host:0, 0.3457734646.1776680978.228710>
      [
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        [NaN],
        ...
      ]
    >
  }
}
2 Likes