Image diffusion models, though originally developed for image generation, implicitly capture rich semantic structures that enable various recognition and localization tasks beyond synthesis. In this work, we investigate their self-attention maps can be reinterpreted as semantic label propagation kernels, providing robust pixel-level correspondences between relevant image regions. Extending this mechanism across frames yields a temporal propagation kernel that enables zero-shot object tracking via segmentation in videos. We further demonstrate the effectiveness of test-time optimization strategies-DDIM inversion, textual inversion, and adaptive head weighting-in adapting diffusion features for robust and consistent label propagation. Building on these findings, we introduce DRIFT, a framework for object tracking in videos leveraging a pretrained image diffusion model with SAM-guided mask refinement, achieving state-of-the-art zero-shot performance on standard video object segmentation benchmarks.
Read in full here: