Genetic Algorithms in Elixir: First stab at Ch1 algorithm converges just fine? (p28)

I noticed this in the B1 edition as well!

Re:

$ elixir one_max.exs
Current Best: 32

But wait, what’s going on here? Why is the algorithm stopping on a best fitness below 42? No matter how many times you run it, the algorithm will almost always certainly stop improving below 42. The problem is premature convergence.

At this point, the chapter’s example code looks like:

Code to Date
population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)

evaluate = fn population ->
  Enum.sort_by(population, &Enum.sum(&1), &>=/2)
end

selection = fn population ->
  population
  |> Enum.chunk_every(2)
  |> Enum.map(&List.to_tuple(&1))
end

crossover = fn population ->
  Enum.reduce(population, [], fn {p1, p2}, acc ->
    cx_point = :rand.uniform(42)
    {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
    [h1 ++ t2 | [h2 ++ t1 | acc]]
  end)
end

algorithm = fn population, algorithm ->
  best = Enum.max_by(population, &Enum.sum(&1))
  IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
  if Enum.sum(best) == 42 do
    best
  else
    population
    |> evaluate.()
    |> selection.()
    |> crossover.()
    |> algorithm.(algorithm)
  end
end

solution = algorithm.(population, algorithm)
IO.write("\n Answer is \n")
IO.inspect solution

I parameterized it thusly:

Tunable version
-population = for _ <- 1..10, do: for _ <- 1..42, do: Enum.random(0..1)
+problem_size = 42
+population_size = 100
+
+population = for _ <- 1..population_size, do: for _ <- 1..problem_size, do: Enum.random(0..1)

 evaluate = fn population ->
   Enum.sort_by(population, &Enum.sum(&1), &>=/2)
 end

 selection = fn population ->
   population
   |> Enum.chunk_every(2)
   |> Enum.map(&List.to_tuple(&1))
 end

 crossover = fn population ->
   Enum.reduce(population, [], fn {p1, p2}, acc ->
-    cx_point = :rand.uniform(42)
+    cx_point = :rand.uniform(problem_size)
     {{h1, t1}, {h2, t2}} = {Enum.split(p1, cx_point), Enum.split(p2, cx_point)}
     [h1 ++ t2 | [h2 ++ t1 | acc]]
   end)
 end

 algorithm = fn population, algorithm ->
   best = Enum.max_by(population, &Enum.sum(&1))
   IO.write("\rCurrent Best: " <> Integer.to_string(Enum.sum(best)))
-  if Enum.sum(best) == 42 do
+  if Enum.sum(best) == problem_size do
     best
   else
     population
     |> evaluate.()
     |> selection.()
     |> crossover.()
     |> algorithm.(algorithm)
   end
 end

 solution = algorithm.(population, algorithm)
 IO.write("\n Answer is \n")
 IO.inspect solution

In my experimentation, with problem_size = 42, not only did population_size = 100 always converge on the best answer, but even as low as population_size = 8 consistently converged. I started seeing the need for mutation around population_size = 6, which normally gets stuck around 35.

Alternatively, increasing the size of the problem to problem_size = 420 usually converged correctly, but with enough time to watch things work. problem_size = 4200 consistently gets stuck around 2400, as the narrative of the chapter wants it to.

1 Like